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OBJECTIVE ESTIMATION OF PERCEIVED SPEECH QUALITY USING
MEASURING NORMALIZING BLOCKS

Stephen Voran*

Perceived speech quality is most directly measured by subjective listening tests. These
tests are often slow and expensive, and numerous attempts have been made to
supplement them with objective estimators of perceived speech quality. These attempts
have found limited success, primarily in analog and higher-rate, error-free digital
environments where speech waveforms are preserved or nearly preserved.  How to
objectively measure the perceived quality of highly compressed digital speech, possibly
with bit errors or frame erasures, has remained an open question.  We describe a new
approach to this problem, using a simple but effective perceptual transformation, and a
hierarchy of measuring normalizing blocks to compare perceptually transformed speech
signals.  The resulting estimates of perceived speech quality were correlated with the
results of nine subjective listening tests.  Together, these tests include 219 4-kHz
bandwidth speech encoders/decoders, transmission systems, and reference conditions,
with bit rates ranging from 2.4-64 kb/s.  When compared with six other estimators,
significant improvements were seen in many cases, particularly at lower bit rates, and
when bit errors or frame erasures were present.  These hierarchical structures of
measuring normalizing blocks, or other structures of measuring normalizing blocks, may
also address open issues in perceived audio quality estimation, layered speech or audio
coding, automatic speech or speaker recognition, audio signal enhancement, and other
areas.

Key words: audio quality; distance measures; measuring normalizing blocks; objective estimation of
audio quality; objective estimation of speech quality; perceptual transformations; speech
coding; speech quality; subjective estimation of audio quality; subjective estimation of
speech quality

1. BACKGROUND

Digital speech encoding and transmission involves a four-way compromise between complexity, delay,
bit rate, and the perceived quality of decoded speech.  Complexity, delay, and bit rate can often be
quantified in fairly straightforward ways, but perceived quality can be more difficult to measure. 
Subjective listening or conversation tests can be used to gather firsthand evidence about perceived
speech quality, but such tests are often fairly expensive, time-consuming, and labor-intensive.  These

                    
* The author is with the Institute for Telecommunication Sciences, National Telecommunications and Information
Administration, U.S. Department of Commerce, 325 Broadway, Boulder, Colorado 80303.



2

costs are often well-justified, and there is no doubt that the most important measurements of perceived
speech quality will always rely on formal subjective tests.

There are also situations where the costs associated with formal subjective tests do not seem to be
justified.  In particular, much speech coder/decoder (codec) development and optimization work
apparently relies on objective estimators of  perceived speech quality, along with “informal listening
tests.”  Of 26 codecs described at the 1995 IEEE Workshop on Speech Coding for
Telecommunications, only 11 had been tested in formal subjective tests.  Segmental signal-to-noise ratio
(SNRseg) or SNR was used to estimate perceived speech quality in ten cases, cepstral distance (CD)
was used twice, and Bark spectral distortion (BSD) was used once [1].  Codec evaluations presented
at the 1997 IEEE Workshop on Speech Coding for Telecommunications relied mainly on informal and
formal subjective tests [2].

SNR and SNRseg are simple to implement, have straightforward interpretations, and can provide
indications of perceived quality in some waveform-preserving speech systems.  Unfortunately, as shown
in this report and in [3-5], when they are used to evaluate more general coding and transmission
systems, SNR and SNRseg often show little, if any, correlation to perceived speech quality.  The
continued popularity of these two estimators is likely due to their history, their simplicity, and the lack of
a widely tested and accepted replacement.  The main body of ITU-T Recommendation P.861
describes a perceived speech quality estimator called noise disturbance (ND), but its scope is limited to
higher bit rate speech codecs operating over error-free channels [6].  How to objectively measure the
perceived quality of highly compressed digital speech, possibly with bit errors or frame erasures has
remained an open question.

Researchers have recently begun to include explicit models for some of the known attributes of human
auditory perception in their estimators of perceived speech or audio quality [6-15].  The motivation for
this perception-based approach is to create estimators that “hear” speech signals through the same
transformations that humans hear them.  In principle, this was a significant advance.  In practice, when
estimators are evaluated, they often show modest improvement, at best.  The limitations of the
perception-based approach can be traced to two sources.   First, while detailed models for the
detectability and perceived loudness of many different combinations of tones and narrow bands of noise
have been derived,  the nonlinear, time-varying nature of human hearing makes aggregating those results
into practical models for the processing of more general signals (e.g., speech) a formidable task. 
Simplifying approximations are often made, resulting in moderately complex models that generally are
not tested beyond tones and noise, if they are tested at all.  Second, human perception of speech quality
involves both hearing and judgment. Extensive efforts to model hearing have often been followed by
relatively trivial models for judgment.  Our studies have lead us to reverse this emphasis, resulting in a
simple, yet effective, model for hearing, and a more sophisticated model for judgment.

A high-level description of our approach is shown in Figure 1.  The delay of the device under test is first
estimated and removed.  The perceptual transformation contains a simple model for hearing, and the
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Figure 1.  High-level block diagram of the objective estimation approach described in this report.
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distance measure models judgment.  This partition is an approximation.  There is no single clean dividing
line between human hearing and judgment.  The distance measure generates auditory distance (AD)
values.  These non-negative values increase as the input speech and output speech signals move apart
perceptually.   A logistic function can be used to map AD into a finite interval, to better match finite
subjective test results.  Note that Figure 1 describes an estimation approach based on the comparison
of two speech signals.  This most closely parallels the subjective tests known as degradation category
rating (DCR) tests.  In DCR tests, listeners hear the reference and test signals sequentially, and are
asked to compare them.  In the simpler and more popular absolute category rating (ACR) tests,
listeners hear only the test signal and are asked to rate its quality.  In spite of the clear parallel to DCR
tests, the approach shown in Figure 1 provides useful estimates of perceived speech quality as
measured in ACR tests.

In the following sections we describe a delay estimation algorithm and a simple but effective perceptual
transformation.  We discuss distance measures, and the motivation behind measuring normalizing blocks
(MNB’s).  MNB’s are defined, and then combined in hierarchical structures that form distance
measures.  We provide evaluations of the resulting objective estimators of perceived speech quality
through comparison with the results of nine subjective tests. Together, these tests include 219 4-kHz
bandwidth speech codecs, transmission systems, and reference conditions, with bit rates ranging from
2.4-64 kb/s.  When compared with six other estimators, the MNB-based estimators show significant
improvements in many cases, particularly at lower bit rates, and when bit errors or frame erasures are
present. Some benchmark objective estimates of perceived speech quality for standardized codecs are
provided as well.  The estimation algorithms are described in full detail in Appendix A.
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2. DELAY ESTIMATION

As shown in Figure 1, the delay of  the device under test must be estimated and removed prior to the
estimation of perceived speech quality. Many speech codecs do not preserve speech waveforms. When
waveforms are not preserved, waveform cross-correlation and other waveform-matching techniques
give ambiguous or erroneous delay estimates.  For this reason we have developed a two-stage delay
estimation algorithm that is included in ANSI Standard T1.801.04-1997 [16].  A coarse stage uses
speech envelopes, and a fine stage uses speech power spectral densities (PSD’s), both of which are
approximately preserved by speech codecs.

Speech envelopes are calculated in the coarse stage by rectifying speech samples and low-pass filtering
them to an approximate bandwidth of 125 Hz.  These envelopes are then subsampled at 250 samples/s,
and cross-correlated.  The peak in the smoothed cross-correlation function becomes the coarse delay
estimate with an uncertainty of  ±4 ms.  Whenever possible, the fine stage then refines this estimate by
cross-correlating the PSD’s.  This is done at several different times, and the locations of the resulting
peaks are checked for consistency. For some speech codecs PSD’s are not adequately preserved and
fine estimates are not consistent.  This indicates that, from a high resolution viewpoint, the delay is not
constant.  In these situations the coarse delay estimate, along with its inherent 4-ms uncertainty,
becomes the total delay estimate.

The two-stage process is efficient because the coarse stage can search a wide range of delay values, but
at low resolution.  Once the coarse stage has finished its work, its low-resolution estimate provides a
starting place for the fine stage that follows.  The fine stage needs to search only a narrow range of delay
values, consistent with the uncertainty of the coarse estimate.
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3. PERCEPTUAL TRANSFORMATIONS

Perceptual transformations seek to model human hearing.  A useful perceptual transformation will
modify the representation of an audio signal in a way that is approximately equivalent to the human
hearing process. The goal is to mimic human hearing so that only information that is perceptually relevant
is retained.  The literature of psychoacoustics is full of experimental results that describe how humans
perceive tones and bands of noise.  From these results, one finds several prominent properties of human
hearing that might be modeled in a perceptual transformation.  It is clear that the ear’s frequency
resolution is not uniform on the Hertz scale.  It is also clear that perceived loudness is related to signal
intensity in a nonlinear way.  The ear’s sensitivity is clearly a function of frequency, and absolute hearing
thresholds have been characterized.  Finally, many studies have demonstrated time- and frequency-
domain masking effects.

Much less is known about how humans perceive more complex signals, such as speech.  In typical
models, complex signals are decomposed into simple stimuli for which human auditory perception is
better understood.  Internal representations for the simple stimuli are calculated, and then combined in
some manner to generate an internal representation for the original signal. For example, if E1( f ) is the
cochlear excitation pattern due to simple stimulus 1 and E2( f )  is the cochlear excitation pattern due to
simple stimulus 2 then the total cochlear excitation pattern has often been modeled as

[ ]E E Et 1 2( ) ( ) ( ) .f f fp p p= +
1

(1)

However, different values of p have been selected by various authors.  The maximum function “p =  ∞”
is used in [17], p = 1 in [18-21], p = 0.5 in [22], and p = 0.48 in [23].  In [24], p = 0.4 is shown to be
most useful when Et( f ) is used to estimate the perception of coding distortions, and in [25] values of p
between 0.1 and 0.3 provide the best fit to experimental results.  A comparative study with  p =  0.25,
0.5, 1.0, and ∞ is given in [26].

We have studied many of the perceptual transformation components that have been proposed to model
various attributes of the hearing process [6-15],[17-33].  By observing correlations with subjective test
results, we have sought to identify the most effective perceptual transformation components, and the
most appropriate level of perceptual transformation detail for perceived speech quality estimation
[26,34]. We have found that simpler perceptual transformations can be as effective or more effective
than more complex ones.  This observation is in general agreement with [9,27].  In particular, we have
found that the nonuniform frequency resolution and the nonlinear loudness perception seem to be the
most important properties to model.

Thus, we have arrived at a very simple, yet effective perceptual transformation.  This perceptual
transformation is applied to frequency domain representations of the speech signals.  Speech signals are
broken into frames, multiplied by a Hamming window, and then transformed to the frequency domain
using a Fast Fourier Transform (FFT).  Our investigations have not identified any phase measurements
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that reliably result in perceptually relevant information.  Thus only the squared magnitudes of the FFT
results are retained.  The results that follow are based on a sample rate of 8000 samples/s, a frame size
of 128 samples (16 ms) and a 50% frame overlap.  We have experimented with frame sizes of 64 and
256 samples, and found them to be less useful for this application.  We have also experimented with the
frame overlap value, and have found this to be a less critical parameter.

The nonuniform frequency resolution of the ear is treated by the use of a psychoacoustic frequency
scale.  Several such scales have been proposed [20,30-33] and we have determined that for this
application, the minor differences between them are not particularly significant.  We have elected to use
a Bark frequency scale.  The Hertz scale frequency variable f is replaced with the Bark scale frequency
variable b using the relationship

b
f

 =  6 sinh-1⋅ 



600
, (2)

which can be found in [30].  Note that b increases approximately linearly with f  below about 500 Hz,
and b increases according to a compressive nonlinearity above about 500 Hz.  This scale was derived
to match experimental results on critical bands in human hearing [31].  Roughly speaking, on this Bark
scale, equal frequency intervals are of equal perceptual importance.  We used this relationship to
regroup frequency domain samples that are uniformly spaced on the Hertz scale into bands that have
approximately uniform width on this Bark scale. 

Many models for loudness perception as a function of signal intensity are available as well
[20,24,30,31]. Again, our studies indicate that for this application, the choice of a model is not critical,
as long as it contains a compressive nonlinearity.  We have chosen to use a logarithm to convert signal
intensity to perceived loudness.

We have also implemented models for the inner-outer ear transfer function, absolute hearing thresholds,
equal loudness curves, and time- and frequency-domain masking effects.  We have elected not to
include these models in our perceptual transformation.  While these attributes of hearing have all been
well-documented in tone and noise experiments, modeling them does not appear to help with the
estimation of the perceived quality of 4-kHz bandwidth speech.
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4. DISTANCE MEASURES

Distance measures seek to measure the perceived distance between two perceptually transformed
signals. Unfortunately, many existing conventional distance measures display properties that are clearly
inconsistent with human auditory judgment.  As an example, consider a distance measure that takes the
form 

[ ]D[X( ),Y( )]= X( ) -Y( ) dff f f f1
1

Ω
γ γ

∫ , (3)

where X( f ) and Y( f ) are frequency-domain representations of the input and output of the device
under test, respectively, and the integration is over some band of interest with bandwidth Ω. Such
distance measures are invariant to the sign of  the difference X( f )-Y( f ).  This means that the hissy
signal Y1( f ) and the muffled signal Y2( f ) in Figure 2 will received the same distance value, which
would not generally be a perceptually consistent result.

For a second example, consider the more refined distance measure

( )

( )

D[X( ), Y( )] = w X( ) - Y( ) df

w X( ) - Y( ) df

p
Y( ) X( )

n
Y( ) X( )

f f f f f

f f f

p f f

n f f

p

p

n

n

1

1

1

1

Ω

Ω

( )

( ) .

γ

γ

γ

γ

≥

<

∫

∫













+












(4)

In (4) the sign of Y( f )-X( f ) is acknowledged, with separate integrations, integration exponents γ, and
weighting functions w( f ).  With the signals X( f ), Y1( f ), and Y2( f ) shown in Figure 3, D[X( f ),
Y1(  f)] = D[X( f ),Y2( f )]. This is unlikely to be a perceptually consistent result, because Y1( f ) has a
harsh sound, while Y2( f ) has a hollow sound.  Analogous examples exist for undesired time-domain
invariances.
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Figure 2.  Distance measure invariance example 1.
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Figure 3.  Distance measure invariance example 2.
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5. MEASURING NORMALIZING BLOCKS

Based on our studies of conventional distance measures, and our understanding of human hearing and
judgment, we concluded that listeners adapt and react differently to spectral deviations that span
different time and frequency scales.  We further observed that for the speech quality estimation
application, maximal perceptual consistency over a wide range of distortion types requires a family of
analyses that cover multiple frequency and time scales.  The spectral deviations at one scale must be
removed so they are not counted again as part of the deviations at other scales.  We also concluded that
working from larger to smaller scales is most likely to emulate listeners’ patterns of adaptation and
reaction to spectral deviations.  In light of these findings, we elected to form a distance measure from a
hierarchy of time and frequency measuring normalizing blocks.

A time measuring normalizing block (TMNB) is shown in Figure 4 and a frequency measuring
normalizing block (FMNB) is given in Figure 5.  Each of these blocks takes perceptually transformed
input and output signals (X( f,t) and Y( f,t), respectively) as inputs, and returns a set of measurements
and a normalized version of Y( f,t).  The TMNB integrates over some frequency scale, then measures
differences and normalizes the output signal at multiple times.  Finally, the positive and negative portions
of the measurements are integrated over time. In an FMNB the converse is true. An FMNB integrates
over some time scale, then measures differences and normalizes the output signal at multiple
frequencies.  Finally, the positive and negative portions of the measurements are integrated over
frequency.

We now  formalize the MNB definitions.  The TMNB operating on the band that extends from fl to fu
using the measurement time intervals defined by ti, i=0 to N, normalizes Y( f,t) to

~
( , )Y f t and generates

2N measurements m( j):

~
( , ) ( , ) ( , ) ,

( ) ( ( , ), ) ,

( ) ( ( , ), ) , ,

( , ) ( , ) ( , ) .

Y Y e

max e

min e to

where e Y X

f t f t fl t

i
t t

fl t dt

i
t t

fl t dt i N

fl t
fu fl

f t df
fu fl

f t df

i i t

t

i i t

t

fl

fu

fl

fu

i

i

i

i

= −

− =
−

=
−
−

=

=
−

−
−

−

−

−

−

∫

∫
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m
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2 1
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0 1
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1

(5)
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Figure 4.  A time measuring normalizing block (TMNB).

1
fu fl

fl

fu

df− ∫1
fu fl

fl

fu

df− ∫

X( , )f t

X( , )f t Y( , )f t

~Y( , )f t

+

+

-

-

m(2N)

e( fl ,t)

m(2)m(1)

−
− ∫1

1 0

0

1

t t

t

t

neg dt( ) −
− −

−

∫1
1

1

t t

t

t

N N

N

N

neg dt( )1
1 0

0

1

t t

t

t

pos dt− ∫ ( )

∑

∑



13

Figure 5.  A frequency measuring normalizing block (FMNB).
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The FMNB definition is analogous, with the roles of time and frequency exchanged.  At time t0 , the
FMNB operating over time scale τ, using the measurement bands defined by fi, i=0 to N, normalizes

Y(f,t) to
~

( , )Y f t and generates 2N measurements m(j):
~

( , ) ( , ) ( , ) ,

( ) ( ( , ), ) ,

( ) ( ( , ), ) , ,

( , ) ( , ) ( , ) .

Y Y e

max e

min e to

where e Y X

f t f t f t

i
f f

f t df

i
f f

f t df i N

f t f t dt f t dt

i i f
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t

t

t
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i
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= −

− =
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= −
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1 1
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1
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0

0

0

m

m

τ τ

τ τ

(6)

By design, both types of MNB’s are idempotent.

If MNB(X,Y) =  (X,Y, ),  then   MNB(X,Y) =  (X,Y,
~ ~ ~

).m 0 (7)

In other words, a second pass through a given MNB will not further alter the output signal, and the
vector of measurements resulting from that second pass will contain only zeros.  The idempotency of
MNB’s allows them to be cascaded and yet they measure the deviation at a given time or frequency
scale once and only once.

5.1  Distance Measures that Use Measuring Normalizing Blocks

In order to measure spectral deviations at multiple time and frequency scales, we have formed
hierarchical structures of TMNB’s and FMNB’s, that operate at decreasing scales.  In these structures,
spectral deviations at one time or frequency scale are measured and removed before the next smaller
scale is considered.  When used as distance measures in conjunction with the simple perceptual
transformation described above, this top-down approach appears to do a good job of emulating
listeners’ patterns of adaptation and reaction to spectral deviations.  A generalized diagram of these
structures is shown in Figure 6.  Each MNB in the structure generates a measurement vector mi,j.  Two
specific structures are shown in Figures 7 and 8. These are referred to as MNB structure 1 and MNB
structure 2, respectively.  As always, a complexity-performance trade-off  is at work here.  These two
structures were chosen for their balance of relatively low complexity and high performance as estimators
of perceived speech quality across a wide range of conditions and quality levels.  Other MNB structures
may be more appropriate for more specific speech or audio quality estimation applications.  In addition,
these structures or other MNB structures may address open issues in perceived audio quality



15

Figure 6.  Generalized measuring normalizing block (MNB) structure.
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Figure 7.  MNB structure 1.
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Figure 8.  MNB structure 2.
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estimation, layered speech or audio coding, automatic speech or speaker recognition, audio signal
enhancement, and other areas.

Both MNB structures start with an FMNB that is applied to the input and output signals at the longest
available time scale.  Four measurements are extracted and stored in the measurement vector m.  These
measurements cover the lower and upper band edges of telephone band speech (0-500 Hz and 3000-
3500 Hz.)  In MNB structure 1, a TMNB is then applied to the input and output signals at the largest
frequency scale (approximately 15 Bark).  Six additional TMNB’s are then applied at a smaller scale
(approximately 2-3 Bark).  Finally a residual measurement is made.In MNB structure 2,  the middle
portion of the band undergoes two levels of binary band splitting, resulting in bands that are
approximately 2-3 Bark wide.  The extreme top and bottom portions of the band are each treated once
by a separate TMNB.  Finally a residual measurement is made.

The perceptual transformation and the MNB structures are described together in full detail in Appendix
A.  The idempotence of the MNB along with the hierarchical nature of MNB structures leads to linear
dependence among the MNB measurements.  As shown in Figures 7 and 8, only linearly independent
measurements are retained.  Thus, MNB structure 1 results in 12 measurements, while MNB structure
2 results in 11 measurements.  For these two structures, a full set of linearly independent measurements
can be formed from just the positive portions of the error functions e( f,t).  These are the odd-numbered
measurements in (5) and (6).  Linear combinations of these measurements provide good estimates of the
perceptual distance between two speech signals and good estimates of perceived speech quality.  The
value that results from this linear combination is called auditory distance (AD):

AD =  w mT ⋅ , (8)

where w is a length 12 (MNB structure 1) or 11 (MNB structure 2) vector of weights.  In practice, AD
values are non-negative.  When the input and output signals are identical, all measurements are zero and
AD is zero.  As the input and output signals move apart perceptually, AD increases.
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6. ESTIMATION OF PERCEIVED SPEECH QUALITY

6.1  Logistic Function

MNB structures 1 and 2 were designed to be used as distance measures.  The AD distance values they
generate were intended to be used to estimate perceived speech quality.  Subjective perceived speech
quality ratings usually cover finite ranges.  The mean opinion score (MOS) scale is often used in ACR
tests, while the degradation mean opinion score (DMOS) scale is very popular for DCR tests.  Both of
these scales cover the interval from 1 to 5.  Thus, correlation with these subjective rating scales may be
increased by mapping AD values into a finite range.  We use the logistic function with asymptotes at 0
and 1:

L =
1

1+e
( ) .z

a z b⋅ + (9)

When a > 0, L(z) is a decreasing function of z.

6.2 Correlation with Subjective Test Results

To judge the usefulness of the L(AD) values as estimators of relative perceived speech quality, we
compared L(AD) and six other established objective estimators of speech quality with the results of
formal subjective tests.  Nine ACR tests that use the MOS scale tests were available to us, and they are
summarized in Table 1.  While the objective estimator structure more closely parallels DCR subjective
tests, only ACR subjective tests were available for this study.  Together, these 9 tests include 219
4-kHz bandwidth speech codecs, transmission systems, and reference conditions, with bit rates
ranging from 2.4-64 kb/s, and some analog conditions as well. Both flat and intermediate reference
system (IRS)-filtered speech material [35] was included. IRS filtering simulates the sending
response of a typical telephone handset. A total of 22 hours of speech from at least 52 different
speakers, both male and female, in three different languages was used.  This collection of speech
files and scores has allowed us to complete one of the most comprehensive tests of objective
estimators of perceived relative speech quality.

The six established estimators are SNR [4], SNRseg [4], perceptually weighted SNRseg (PWSNRseg)
[36],  CD [4], BSD [15], and ND as defined in the main body of ITU-T Recommendation P.861 [6].
To create a uniform comparison, each of these estimators was passed through the logistic function in
(9).  For each estimator, the constants a and b were selected to maximize the coefficient of correlation
between the logistic function output and MOS across the nine subjective tests. The maximizing values of
a and b are shown in Table 2.  The resulting coefficients of correlation are shown in Table 3.

The correlation values in Table 3 were calculated after averaging all available subjective scores for each
condition to a single score for that condition.  Similarly, for each condition, all available objective
estimates were averaged to generate a single objective estimate for that condition. Thus, we refer to
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Table 1.  Summary of Material in Nine Subjective Tests

Test
Number of
Conditions Conditions 1,2 Filtering of

Input Speech Language
Talkers per
Condition Files Minutes

1 22

PCM: 64, 48, 40 kb/s
ADPCM: 32 kb/s, x1, 2, 3, 4
APC: 16 kb/s, 2 versions
Proprietary Codec: 16 kbps
SELP: 4.8 kb/s, 2 versions
LPC: 2.4 kb/s
MNRU: 6 levels
Narrow-Band MNRU: 3 levels

None
North

American
English

4 176 8

2 35

PCM: 64 kb/s
Proprietary CELP A: 8 kb/s, over 9 RF channels, bit
    errors and frame erasures
Proprietary CELP B: 8 kb/s, over 9 RF channels, bit
    errors and frame erasures
AMPS over 9 RF channels
MNRU: 7 levels

IRS filtered
North

American
English

6 1050 100

3 27

ADPCM: 32 kb/s, clear and bit errors
CVSD: 32, 16 kb/s, clear and bit errors
VSELP: 8 kb/s
CELP: 4.8 kb/s, clear and bit errors
IMBE: 4.8, 2.4 kb/s
STC A: 4.8, 2.4 kb/s, clear and bit errors
STC B: 2.4 kb/s
LPC: 2.4 kb/s, clear and bit errors
POTS
MNRU: 8 levels

None
North

American
English

6 1994 225
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4 38

ADPCM: 32 kb/s, x4
LD-CELP: 16 kb/s
VSELP: 8 kb/s
Proprietary Non-Waveform Codec: 6.4 kb/s
Proprietary Non-Waveform Codec: 4 kb/s, 3 input  
     levels
Proprietary Non-Waveform Codec: 4 kb/s, x2
Proprietary Non-Waveform Codec: 4 kb/s +           
      ADPCM: 32 kb/s
Proprietary Non-Waveform Codec: 4 kb/s + VSELP:
   8 kb/s
Proprietary Non-Waveform Codec: 4 kb/s + RPE-  
     LTP: 13 kb/s
Proprietary Non-Waveform Codec: 4 kb/s + LD-    
     CELP: 16 kb/s + LD-CELP: 16 kb/s
MNRU: 7 levels

Both IRS
filtered and
unfiltered

North
American
English

8 2432 264

5 20
PCM: 64 kb/s, x1, 2, 4, 8, 16
ADPCM: 32 kb/s, x1, 2, 4
G.728 Candidate 16 kb/s, x1, 2, 4
MNRU: 9 levels

IRS filtered North
American
English

4 1440 206

6 20 Same as test 5 IRS filtered Japanese 4 1440 188
7 20 Same as test 5 IRS filtered Italian 4 1440 131

8 47

LD-CELP: 16 kb/s
8 CELP Codecs: ≅13 kb/s, frame error rates 0, 1, 2,
3, 5%
MNRU: 6 levels

IRS filtered
North

American
English

8 1360 136

9 30

VSELP: 8 kb/s, 11 simulated radio environments
ACELP: 8 kb/s, 11 simulated radio environments
PCM: 64 kb/s
CELP: 4.8 kb/s
POTS
MNRU: 5 levels

Both IRS
filtered and
unfiltered

North
American
English

8 480 54

1 The notation “xN” is used to indicate N passes through the indicated device.
2 The notation “codec1 + codec2” is used to indicate that two different codecs were tandemed to create a single condition.
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Table 2.  Optimized Values of Logistic Function Parameters

Objective Estimator a b

SNR -0.0552 -0.3490

SNRseg -0.0542 -0.3927

PWSNRseg -0.1073  0.1910

CD  0.4175 -1.8274

BSD  6.3081 -0.7434

ND  0.5567 -1.7450

Table 3.  Per-condition Coefficients of Correlation Between Subjective Scores and Objective Estimators

Test L(SNR) L(SNRseg) L(PWSNRseg) L(CD) L(BSD) L(ND)

1* .333 .381 .393 .486 .825 .928

2* .526 .522 .620 .729 .731 .941

3* .295 .494 .507 .617 .368 .793

4* .247 .221 .636 .789 .863 .973

5  .226 .267 .523 .948 .919 .986

6  .271 .313 .502 .933 .850 .986

7  .317 .340 .542 .975 .892 .976

8* .556 .381 .605 .671 .801 .858

9* .433 .326  .544 .838 .712 .827

*  These tests include conditions that are outside the defined scope of the ND algorithm.
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these correlation values as “per-condition” correlations.  A more advanced analysis technique,
described in [37], recognizes the importance of the distributions of the objective estimates and the
subjective scores for each condition, how they influence confidence intervals, and in turn,  the final
conclusions that one draws from objective and subjective tests.

Table 3 demonstrates the limitations of SNR, SNRseg, and PWSNRseg as estimators of perceived
speech quality.  CD and BSD tend to show higher correlations for tests 5, 6, and 7, which contain only
conditions that tend to preserve waveforms.  L(ND) appears to be the most reliable of these six existing
objective estimators, across these nine tests.  Since tests 1-4, 8, and 9 contain conditions that are
outside of the defined scope of the ND algorithm, we conclude that this algorithm can sometimes make
useful estimates outside of its scope. Because L(ND) appears to be the most reliable of these six
objective estimators, we use it as the reference against which to compare L(AD).

Table 4 shows per-condition correlation values for L(AD) as calculated by the two MNB structures. 
Since L(ND) is used as a reference, that column from Table 3 is repeated as column 2 of Table 4 to
allow for easy comparisons.  Two versions of the estimators were evaluated.  These versions differ only
in the values of the weights used in (8), and the constants used in (9).

The first version of each estimator was created by optimizing variables in (8) and (9) to maximize
correlation between L(AD) and MOS across tests 1 and 2 only.  The parameter a in (9) was absorbed
into the weights in (8), resulting in 13 or 12 free variables. These variables were used to fit 1,226 data
points, so the fitting problem was over-determined by an approximate factor of 100. The resulting
correlation values are shown in Table 4, columns 3 and 4. These columns show that this limited
optimization results in an objective speech quality estimator that generalizes well to the other seven tests.
 This result is important because it indicates that these estimators do model perception and judgment,
rather than inadvertently modeling some specific properties of the conditions in tests 1 and 2.

To create the most effective estimator, one must use all available data.  Thus, we created a second
version of each estimator by optimizing variables in (8) and (9) to maximize correlation across all nine
tests.  This involved fitting 11,812 data points, so the fitting problem was over-determined by a factor
greater than 900.  The resulting correlations are shown in columns 5 and 6 of Table 4. When all nine
tests are considered together, MNB structure 2 appears to be slightly more useful than MNB structure
1.  Both structures show dramatic improvements over L(ND) on tests 3, 8 and 9, which contain the
lower rate speech codecs, bit error, and frame erasure conditions.  We have provided four scatter plots
to allow for visual interpretations of per-condition correlation values.  Each plot shows an objective
estimator vs MOS, using a single point per condition.  Four cases were selected to display a range of
correlation values.  Figure 9 shows L(BSD) for test 3 where the per-condition correlation, ρ, is .368.
Figure 10 shows L(ND) for test 3 where ρ=.793. Figure 11 gives L(AD) using the fully optimized
MNB structure 2, also on test 3, with ρ=.959. Finally, Figure 12 shows L(AD) using the fully optimized
MNB structure 1, on test 5, where ρ=.986.
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Table 4.  Per-condition Coefficients of Correlation Between Subjective Scores and Objective Estimators

Test L(ND) L(AD)

MNB-1 MNB-2 MNB-1 MNB-2

Weights optimized using only tests 1 and 2. Weights optimized using tests 1-9.

1 .928 .931 .928 .932 .956

2 .941 .965 .963 .951 .945

3 .793 .939 .944 .935 .959

4 .973 .964 .979 .977 .976

5 .986 .955 .963 .986 .984

6 .986 .965 .969 .983 .982

7 .976 .967 .971 .980 .984

8 .858 .954 .953 .936 .961

9 .827 .921 .923 .910 .942
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Figure 9.  L(BSD) as an estimator of perceived speech quality on test 3, ρ=.368.

Figure 10.  L(ND) as an estimator of perceived speech quality on test 3, ρ=.793.
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Figure 11.  MNB structure 2 as an estimator of perceived speech quality on test 3, ρ=.959.

Figure 12.  MNB structure 1 as an estimator of perceived speech quality on test 5, ρ=.986.
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6.3  Observations and Discussion

The optimized values of the variables in (8) and (9) are given in Table A-1. Because the measurements
have different variances, the weights do not indicate the relative importance of the measurements.  Note
that one weight in Table A-1 is zero, indicating that the first measurement in MNB structure 2 does not
presently provide useful information for this application.  We retain this measurement for completeness,
and for its potential future utility in this or other applications. In both structures, the first four weights are
applied to FMNB measurements taken at the edges of the speech band.  For MNB structure 1, w(1)
and w(2) indicate that to maximize estimated speech quality, energy below 250 Hz (outside the
telephony speech passband) should be minimized, but only if energy above 250 Hz can be retained.  
Similarly, w(3) and w(4) indicate that energy above 3250 Hz should be minimized, but not at the
expense of energy below 3250 Hz. These data-driven mathematical results agree with our intuitions
about in-band speech power and out-of-band noise.  As part of a sensitivity analysis, we determined
that when the weights in w are perturbed from their optimal values by 10%, resulting coefficients of
correlation are reduced by about 1%.  In addition, 1% and 0.1% perturbations in the weights result in
0.1% and 0.01% reductions in correlation, respectively.

Table 4 shows that correlations between fully optimized MNB estimators and subjective scores range
from .910 to .986.  Given the breadth of conditions covered by the nine tests, these are very
encouraging results.  In particular, the improved ability to estimate perceived speech quality for lower
rate speech codecs, some of which are operating with bit errors or frame erasures, represents an
important advance.  Based on this improvement, ITU-T Recommendation P.861 has been updated by
the inclusion of an MNB algorithm in Appendix II of the Recommendation [38]. The algorithm that
appears there is an earlier version of MNB structure 2 described in this report.

For unoptimized software implementations, we found that either of the MNB-based estimators requires
approximately 920,000 floating-point operations to process 1 second (8,000 samples) of speech. 
Because the bulk of these operations is devoted to the FFT, both MNB algorithms can be run at the
same time using only 940,000 floating-point operations.  Similarly, an unoptimized implementation of the
ND algorithm required about 1.21 million floating-point operations to process 1 second (8,000
samples) of speech.

We have also implemented the MNB estimators with the frame overlap reduced from 50% to zero. 
This reduces the number of computations in the unoptimized implementation by a factor of two but has
surprisingly little impact on estimator performance for the conditions described in Table 1.   When the
frame overlap is reduced to zero and the parameters given in Table A-1 are optimized, the resulting
coefficients of correlation shown in Table 4 all change by less than 0.5% from their original values. In
spite of this result, we do not recommend implementations with zero frame overlap because the
estimator could be extremely vulnerable to certain periodic, frame-synchronous noises and distortions. 
In addition, 50% overlap of Hamming windows places equal weight on each speech sample but zero
overlap does not place equal weight on each speech sample.
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6.4  Benchmark Values

Tables 5-8 provide benchmark values of AD and L(AD) for both MNB algorithms.  Results are given
for 11 standardized speech codecs and for 14 modulated noise reference unit (MNRU) [39] conditions.
 Within each table, AD and L(AD) results generally agree with known results on the perceived quality of
these codecs and MNRU conditions.  These results provide context for AD or L(AD) measurements
made on other codecs or conditions.

Each condition in Tables 5-8 was evaluated using a total of 64 English-language sentence pairs. These
64 sentence pairs come from 4 female and 4 male talkers, each providing 8 different sentence pairs. 
Together, the 64 sentence pairs last about 400 seconds.  Two sets of values were computed. 
Wideband speech recordings were band limited to 200-3400 Hz using a flat bandpass filter and then
passed through the 25 conditions listed in the tables.  Values for this “flat speech” experiment are given
in Tables 5 and 6.  In addition, wideband speech was filtered according to the IRS sending sensitivity
characteristic [35] and then passed through the 25 conditions.  Values for this “IRS speech” experiment
are given in Tables 7 and 8.  The tables provide a mean value taken across all 64 sentence pairs, as well
as the half-width of the 95% confidence interval about that mean. As indicated in the tables, conditions
1-5 use µ-law compression.  The results for A-law compression were computed as well, and in all
cases, their confidence intervals overlap those of the µ-law results.

The MNRU is the most common reference condition for subjective and objective speech quality
assessments.  A common anchoring technique uses MNRU conditions with Q (SNR) values at  5- or
6-dB increments.  We have provided benchmark values for MNRU conditions with Q values between
0 and 40 dB, in 5- and 6-dB increments.  In addition, (10) through (13) give quadratic fits between Q
and AD for the 4 cases that correspond to Tables 5-8.

AD Q Q Q≈ ⋅ − ⋅ + ≤ ≤ −00003 01862 81859 0 402. . . , , MNB 1, Flat  Speech (10)

AD Q Q Q≈ ⋅ − ⋅ + ≤ ≤ −0 0020 02583 7 6220 0 402. . . , , MNB 2, Flat  Speech (11)

AD Q Q Q≈ ⋅ − ⋅ + ≤ ≤ −0 0024 02719 8 2523 0 402. . . , , MNB 1, IRS Filtered  Speech (12)

AD Q Q Q≈ ⋅ − ⋅ + ≤ ≤ −0 0031 0 2846 69276 0 402. . . , , MNB 2,  IRSFiltered  Speech (13)

When coupled with (9), these results allow one to relate Q to L(AD).  These relationships in turn allow
reference to subjective test results that are given in terms of Q.
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Table 5. MNB Structure 1 Benchmark Values for Flat Speech

Condition Mean AD Half-width of 95%
CI on Mean AD

Mean L(AD) Half-width of 95% CI
on Mean L(AD)

G.711 PCM, µ-law, 64 kbps 1.9144 0.0645 0.9395 0.0040
G.726 ADPCM  µ-law, 40 kbps 2.3810 0.0545 0.9077 0.0048
G.726 ADPCM  µ-law, 32 kbps 2.9522 0.0543 0.8480 0.0070
G.726 ADPCM  µ-law, 24 kbps 3.9458 0.0571 0.6753 0.0121
G.726 ADPCM  µ-law, 16 kbps 5.1584 0.0745 0.3866 0.0176
G.728 LD-CELP, 16 kbps 3.2460 0.0710 0.8048 0.0112
GSM 6.10 RPE-LTP, 13 kbps 3.3194 0.0532 0.7949 0.0086
TIA/EIA 635 VSELP, 8 kbps 3.5978 0.0531 0.7462 0.0100
FS1016 CELP, 4.8 kbps 4.2856 0.0532 0.5981 0.0127
FS1015 LPC, 2.4 kbps 4.9589 0.0684 0.4340 0.0164
MELP, 2.4 kbps [40] 4.4928 0.0748 0.5475 0.0182
MNRU, Q=40 1.5366 0.0365 0.9586 0.0015
MNRU, Q=36 1.8960 0.0522 0.9411 0.0030
MNRU, Q=35 2.0097 0.0568 0.9343 0.0036
MNRU, Q=30 2.7244 0.0785 0.8728 0.0086
MNRU, Q=25 3.6246 0.0933 0.7368 0.0171
MNRU, Q=24 3.8173 0.0951 0.6986 0.0189
MNRU, Q=20 4.6089 0.1020 0.5182 0.0244
MNRU, Q=18 5.0027 0.1059 0.4244 0.0252
MNRU, Q=15 5.5805 0.1127 0.2985 0.0236
MNRU, Q=12 6.1346 0.1209 0.2013 0.0198
MNRU, Q=10 6.4870 0.1272 0.1532 0.0169
MNRU, Q=6 7.1354 0.1388 0.0893 0.0115
MNRU, Q=5 7.2862 0.1414 0.0783 0.0103
MNRU, Q=0 7.9791 0.1497 0.0418 0.0059
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Table 6.  MNB Structure 2 Benchmark Values for Flat Speech

Condition Mean AD Half-width of 95%
CI on Mean AD

Mean L(AD) Half-width of 95% CI
on Mean L(AD)

G.711 PCM, µ-law, 64 kbps 0.8605 0.0334 0.8997 0.0030
G.726 ADPCM  µ-law, 40 kbps 1.1822 0.0296 0.8669 0.0034
G.726 ADPCM  µ-law, 32 kbps 1.6170 0.0406 0.8078 0.0063
G.726 ADPCM  µ-law, 24 kbps 2.4503 0.0545 0.6465 0.0124
G.726 ADPCM  µ-law, 16 kbps 3.6229 0.0824 0.3665 0.0187
G.728 LD-CELP, 16 kbps 1.8195 0.0454 0.7743 0.0080
GSM 6.10 RPE-LTP, 13 kbps 1.6594 0.0419 0.8011 0.0066
TIA/EIA 635 VSELP, 8 kbps 2.1782 0.0461 0.7060 0.0095
FS1016 CELP, 4.8 kbps 2.7902 0.0486 0.5667 0.0118
FS1015 LPC, 2.4 kbps 3.8886 0.0790 0.3084 0.0163
MELP, 2.4 kbps [40] 3.0911 0.0959 0.4935 0.0232
MNRU, Q=40 0.6219 0.0214 0.9196 0.0016
MNRU, Q=36 0.8669 0.0324 0.8991 0.0029
MNRU, Q=35 0.9468 0.0359 0.8915 0.0034
MNRU, Q=30 1.4778 0.0554 0.8274 0.0076
MNRU, Q=25 2.2351 0.0770 0.6915 0.0155
MNRU, Q=24 2.4129 0.0818 0.6527 0.0175
MNRU, Q=20 3.1958 0.1017 0.4669 0.0243
MNRU, Q=18 3.6213 0.1123 0.3686 0.0255
MNRU, Q=15 4.2878 0.1272 0.2382 0.0237
MNRU, Q=12 4.9660 0.1402 0.1428 0.0187
MNRU, Q=10 5.4123 0.1475 0.0991 0.0149
MNRU, Q=6 6.2511 0.1596 0.0476 0.0084
MNRU, Q=5 6.4478 0.1624 0.0398 0.0072
MNRU, Q=0 7.3357 0.1727 0.0173 0.0033
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Table 7. MNB Structure 1 Benchmark Values for IRS Filtered Speech

Condition Mean AD Half-width of 95%
CI on Mean AD

Mean L(AD) Half-width of 95% CI
on Mean L(AD)

G.711 PCM, µ-law, 64 kbps 1.6095 0.0406 0.9554 0.0019
G.726 ADPCM  µ-law, 40 kbps 2.6178 0.0504 0.8863 0.0052
G.726 ADPCM  µ-law, 32 kbps 3.2749 0.0554 0.8018 0.0088
G.726 ADPCM  µ-law, 24 kbps 4.1863 0.0537 0.6214 0.0125
G.726 ADPCM  µ-law, 16 kbps 5.3573 0.0688 0.3413 0.0153
G.728 LD-CELP, 16 kbps 3.2370 0.0630 0.8070 0.0101
GSM 6.10 RPE-LTP, 13 kbps 3.6603 0.0582 0.7339 0.0112
TIA/EIA 635 VSELP, 8 kbps 3.8011 0.0700 0.7049 0.0145
FS1016 CELP, 4.8 kbps 4.3568 0.0716 0.5803 0.0170
FS1015 LPC, 2.4 kbps 5.2181 0.0911 0.3743 0.0205
MELP, 2.4 kbps [40] 4.8443 0.0701 0.4614 0.0171
MNRU, Q=40 1.4121 0.0288 0.9634 0.0011
MNRU, Q=36 1.6163 0.0393 0.9552 0.0018
MNRU, Q=35 1.6834 0.0431 0.9521 0.0021
MNRU, Q=30 2.1452 0.0667 0.9248 0.0052
MNRU, Q=25 2.8320 0.0952 0.8583 0.0127
MNRU, Q=24 2.9971 0.1001 0.8369 0.0147
MNRU, Q=20 3.7362 0.1180 0.7124 0.0246
MNRU, Q=18 4.1487 0.1237 0.6255 0.0285
MNRU, Q=15 4.8046 0.1278 0.4736 0.0301
MNRU, Q=12 5.4782 0.1285 0.3226 0.0261
MNRU, Q=10 5.9331 0.1279 0.2357 0.0216
MNRU, Q=6 6.8134 0.1248 0.1160 0.0124
MNRU, Q=5 7.0248 0.1239 0.0963 0.0105
MNRU, Q=0 7.9904 0.1221 0.0395 0.0047
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Table 8. MNB Structure 2 Benchmark Values for IRS Filtered Speech

Condition Mean AD Half-width of 95%
CI on Mean AD

Mean L(AD) Half-width of 95% CI
on Mean L(AD)

G.711 PCM, µ-law, 64 kbps 0.7007 0.0230 0.9135 0.0018
G.726 ADPCM  µ-law, 40 kbps 1.4589 0.0433 0.8309 0.0062
G.726 ADPCM  µ-law, 32 kbps 2.0275 0.0560 0.7354 0.0112
G.726 ADPCM  µ-law, 24 kbps 2.8975 0.0739 0.5405 0.0180
G.726 ADPCM  µ-law, 16 kbps 3.9852 0.0940 0.2904 0.0181
G.728 LD-CELP, 16 kbps 1.9666 0.0455 0.7477 0.0085
GSM 6.10 RPE-LTP, 13 kbps 1.9071 0.0454 0.7587 0.0083
TIA/EIA 635 VSELP, 8 kbps 2.4007 0.0620 0.6572 0.0139
FS1016 CELP, 4.8 kbps 2.8412 0.0687 0.5536 0.0166
FS1015 LPC, 2.4 kbps 4.1366 0.1037 0.2622 0.0188
MELP, 2.4 kbps [40] 3.4433 0.0863 0.4085 0.0201
MNRU, Q=40 0.5631 0.0201 0.9238 0.0015
MNRU, Q=36 0.7183 0.0268 0.9120 0.0022
MNRU, Q=35 0.7698 0.0291 0.9077 0.0025
MNRU, Q=30 1.1213 0.0450 0.8730 0.0052
MNRU, Q=25 1.6646 0.0667 0.7982 0.0110
MNRU, Q=24 1.7990 0.0710 0.7755 0.0126
MNRU, Q=20 2.4236 0.0899 0.6500 0.0203
MNRU, Q=18 2.7858 0.0978 0.5662 0.0235
MNRU, Q=15 3.3875 0.1084 0.4230 0.0254
MNRU, Q=12 4.0407 0.1176 0.2828 0.0226
MNRU, Q=10 4.4979 0.1226 0.2034 0.0188
MNRU, Q=6 5.4260 0.1309 0.0948 0.0105
MNRU, Q=5 5.6576 0.1326 0.0772 0.0089
MNRU, Q=0 6.7363 0.1414 0.0285 0.0038
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7.  CONCLUSION

There is a clear need for estimators of perceived relative speech quality that provide reliable estimates,
especially for lower-rate speech codecs, errored transmission channels, and other situations where
waveforms are not preserved.  Although they are clearly not perceptually consistent, SNR-based
estimators are still in common use, probably due to their history, their simplicity, and the lack of a widely
tested and accepted replacement.  The recent attempts to incorporate models for human auditory
perception into these estimators are clearly an important step forward.  Unfortunately, it is not clear how
simple models for the perception of tones and bands of noise might be best combined to create
perceptual transformations that model the perception of more general signals such as speech.  In
addition, judgment is at least as important as hearing, but many highly refined hearing models have been
followed by fairly simplistic judgment models, resulting in estimators that do not perform as reliably as
one might hope.  Our studies of perceptual transformations and distance measures have lead us to
reverse this emphasis, resulting in a simple yet effective model for hearing, and a more sophisticated
model for judgment.

Listeners adapt and react differently to spectral deviations that span different time and frequency scales.
 This motivates the development of a family of analyses that cover multiple frequency and time scales.
To best emulate listeners’ patterns of adaptation and reaction to spectral deviations, these analyses
should proceed from larger scales to smaller scales.  Further, spectral deviations at one scale must be
removed so they are not counted again as part of the deviations at other scales. To meet these
requirements, we have developed time measuring normalizing blocks and frequency measuring
normalizing blocks.  These idempotent blocks have been combined to form two hierarchical structures
that comprise two distance measures.  In effect, these structures decompose a codec output signal in a
space defined partly by human hearing and judgment, and partly by the codec input signal.  The
parameters of this dynamic decomposition are combined linearly to form a measure of the perceptual
distance between those two signals, which in turn is used to form an estimate of relative perceived
speech quality.

Nine ACR subjective tests, using the MOS scale were available for testing objective estimators of
perceived speech quality. Together, these 9 tests included 219 4-kHz bandwidth speech codecs,
transmission systems, and reference conditions, with bit rates ranging from 2.4-64 kb/s, and some
analog conditions as well.  This collection of speech files and scores has allowed us to complete one of
the most comprehensive tests of objective estimators of perceived relative speech quality.  Six
established estimators were tested along with the new MNB-based estimators.  When the MNB
estimators were optimized using only two of the tests, they generalized well to the other seven tests. 
The correlations between subjective scores and the fully optimized MNB estimators range from .910 to
.986.  Given the breadth of conditions covered by the nine tests, these are very encouraging results. In
particular, the improved ability to estimate perceived speech quality for lower rate speech codecs, some
of which are operating with bit errors or frame erasures represents an important advance.  The two
MNB structures presented here were chosen for their balance of relatively low complexity and high
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performance as estimators of perceived speech quality across a wide range of conditions and quality
levels.  Other MNB structures may be more appropriate for more specific speech or audio quality
estimation applications.  In addition, these structures or other MNB structures may address open issues
in perceived audio quality estimation, layered speech or audio coding, automatic speech or speaker
recognition, audio signal enhancement, and other areas.

Formal subjective tests will very likely always provide the final definitive word when codecs and
transmission systems are evaluated in major standardization, marketing, and procurement decisions.  But
objective estimators of perceived relative speech quality have a role to play as well.  That role continues
to expand as new estimators, like those described here, demonstrate increased reliability across broader
ranges of test conditions.  Perceptually consistent objective estimators of speech quality can provide a
meaningful common language for designers and developers who wish to compare their results, but do
not have access to subjective testing facilities.  Estimators may also be consulted to aid in design
decisions that might otherwise be made on the basis of a single designer’s perception and judgment
alone.  In this situation, a large number of talkers, languages, or other relevant conditions can be tested
with little effort in a comparatively short time.  Finally, objective estimators are particularly well-suited
for continuously monitoring speech transmission and storage systems of interest, and reporting
deviations from established baseline quality levels.
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ACRONYMS AND ABBREVIATIONS

ACELP algebraic code-excited linear prediction
ACR absolute category rating
AD auditory distance
ADPCM adaptive differential pulse-code modulation
AMPS advanced mobile phone service
APC adaptive predictive coding
BSD Bark spectral distortion
CCITT The International Telegraph and Telephone Consultative Committee (now ITU-T)
CD cepstral distance
CELP code-excited linear prediction
CVSD continuously variable slope delta modulation
DCR degradation category rating
FFT fast Fourier transform
FMNB frequency measuring normalizing block
G.728 ITU-T Recommendation G.728
Hz Hertz
IEEE The Institute of Electrical and Electronics Engineers, Inc.
IMBE improved multiband excitation
IRS intermediate reference system
ITU-T International Telecommunication Union-Telecommunication Standardization 

Sector
kb/s kilobits per second
kHz kilohertz
LD-CELP low-delay-code-excited linear prediction
LPC linear predictive coding
MNRU modulated noise reference unit
MELP mixed excitation linear prediction
MNB measuring normalizing block
MOS mean opinion score
ms millisecond
ND noise disturbance
P.861 ITU-T Recommendation P.861
PCM pulse-code modulation
POTS plain old telephone service
PSD power spectral density
PWSNRseg perceptually weighted segmental signal-to-noise ratio
RF radio frequency
RPE-LTP regular pulse excitation - long-term prediction
SELP self-excited linear prediction
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SNR signal-to-noise ratio
SNRseg segmental signal-to-noise ratio
STC sinusoidal transform coding
TMNB time measuring normalizing block
VSELP vector sum-excited linear prediction
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APPENDIX A:  DESCRIPTION OF MNB ALGORITHMS

This appendix provides complete descriptions of the MNB algorithms at a level of detail that allows for
implementation.  To implement MNB structure 1, follow steps A.1-A.6 and A.8.  To implement MNB
structure 2, follow steps A.1-A.5, A.7, and A.8.  To avoid a proliferation of variable names, this
appendix does not use a unique variable for each intermediate result.  Rather, variables are reused, just
as they would be in a programming language.

A.1.  Signal Preparation

The input to the algorithm is a pair vectors x and y.  These vectors contain speech samples from the
input and output of the speech device under test, respectively.  The recommended speech sample
precision is at least 16 bits.  The assumed sample rate is 8000 samples/s.  The vectors must contain at
least 1 s of telephone bandwidth speech.  (Vectors used in the development of these algorithms ranged
from 3 to 9 s in duration.)  It is assumed that the two vectors have the same length, and are
synchronized.  Synchronization may be accomplished as described in reference [16] of the report.  The
mean value is then removed from each of the N1 entries in x and y:
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Next, each of the vectors is normalized to a common RMS level:
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A.2.  Transformation to Frequency Domain

Each vector is next broken into a series of frames, with 128 samples in each frame.  The frame overlap
is 50%, so each frame begins 64 samples from the start of the previous frame.  Any samples beyond the
final full frame are discarded.  Each frame of samples is multiplied (sample by sample) by the length 128
Hamming window:

h( ) . .46 cos
( )

, .i
i

i= −
−



 ≤ ≤0 54 0

2 1
127

1 128
π

After multiplication by the Hamming window, each frame is transformed to a 128 point frequency
domain vector using the FFT. Scaling in FFT implementations is apparently not well standardized. The
FFT used in this algorithm should be scaled so that the following condition is met.  When a frame of 128
real-valued samples, each with value 1, is the input to the FFT (no Hamming window), then the complex
value in the DC bin of the FFT output must be 128+0�j.

For each transformed frame, the squared-magnitude of frequency samples 1 through 65 (DC through
Nyquist) are retained.  The results are stored in the matrices X and Y.  These matrices contain 65 rows,
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and N2 columns, where N2 is the number of frames that are extracted from the N1 original samples in x
and y.

A.3.  Frame Selection

Only frames that meet or exceed energy thresholds in both X and Y are used in calculation of AD. For
X, that energy threshold is set to 15 dB below the energy of the peak frame in X:

xenergy j i j xthreshold xenergy j
ji
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−

=
∑X 10
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10

1

65

For Y, the energy threshold is set to 35 dB below the energy of the peak frame in Y:

yenergy j i j ythreshold yenergy j
ji

( ) ( , ) , max( ( ) ).= = ⋅
−

=
∑Y 10

35
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1
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Frames that meet or exceed both of these energy thresholds are retained:

{ ( ) } { ( ) } .xenergy j xthreshold yenergy j ythreshold j≥ ≥ ⇒AND frame is retained

If any frame contains one or more samples that are equal to zero, that frame is eliminated from both
X and Y. These matrices now contain 65 rows, and N3 columns, where N3 is the number of frames that
have been retained. If N3=0, the input vectors do not contain suitable signals and this algorithm is
terminated.

The thresholds given above appear to be the most useful for the general problem of estimating perceived
speech quality across the conditions given in Table 1 of the report.  Other thresholds may be more
useful for other, more specific applications.  In particular, multiple thresholds that separate a speech or
audio signal into several categories (e.g., main signal, background noise, or silence) may be
advantageous.

A.4.  Perceived Loudness Approximation

Each of the frequency domain samples in X and Y is then logarithmically transformed to an
approximation of perceived loudness:

X X Y Y( , ) log ( ( , )) , ( , ) log ( ( , )) , , .i j i j i j i j i j N3= ⋅ = ⋅ ≤ ≤ ≤ ≤10 10 1 65 110 10

A.5.  Frequency Measuring Normalizing Block

An FMNB is applied to X and Y at the longest available time scale, defined by the length (N1) of the
input vectors.  Four measurements are extracted and stored in the measurement vector m. These
measurements cover the lower and upper band edges of telephone band speech.  Positive and negative
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portions of the measurements are not separated.  Temporary vectors f1,  f2, and  f3 are used for
clarity.
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A.6.  Structure 1 Time Measuring Normalizing Blocks

In MNB structure 1, a TMNB is applied to X and Y at the largest frequency scale (approximately 15
Bark).  Six additional TMNB’s are then applied at a smaller scale (approximately 2-3 Bark). Finally a
residual measurement is made.  The result is eight additional measurements that are stored in the length
12 column vector m.  Temporary variables t0,  t1, and t2 are used for clarity. A graphical
representation of MNB structure 1 is given in Figure 7 of the report.  The operations are grouped into
steps a, b, and c below.

a. Largest Scale TMNB (14.9 Bark wide)
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b. Define the vector of band limits g = [2  7  12  19  29  43  66]T.  Then the six small-scale TMNB’s
are implemented by the following pseudocode.

for =1 to 6

(measure)

(normalize

(save positive portion of measurement )

end
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c. Residual Measurement
t Y X

m t
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A.7.  Structure 2 Time Measuring Normalizing Blocks

In MNB structure 2,  the middle portion of the band undergoes two levels of binary band splitting,
resulting in bands that are approximately 2-3 Bark wide.  The extreme top and bottom portions of the
band are each treated once by a separate TMNB.  Finally, a residual measurement is made. The result
is seven additional measurements that are stored in the length 11 column vector m.  A graphical
representation of MNB structure 2 is given in Figure 8 of the report. Temporary variables t0, t1, and
m0, are used for clarity. The operations are grouped into steps a and b below.

a. Define the vectors of band limits u = [2 7 43 7 19 7 12 19 29]T and
v = [6 42 65 18 42 11 18 28 42]T.  Then all TMNB’s are implemented by the following pseudocode.

for =1 to 9

(measure)

(normalize

(save positive portion of measurement )

end
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b. Residual Measurement
t Y X

m t

1 1 65 1

11 1 01
64

12

65

( , ) , ,

( ) max ( ( , ) , )

i j (i, j) (i, j) i j N3

i jN3
j

N3

i

= − ≤ ≤ ≤ ≤

= ⋅
==

∑∑

(measure residual)

(save positive portion of residual measurement) 

A.8.  Linear Combinations and Logistic Functions

The 12 or 11 measurements from MNB structures 1 and 2, respectively, are next combined linearly to
generate an AD value:
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AD =  T w m.

Finally the AD value is passed through the logistic function to generate the final algorithm output, L(AD):

L AD =
1

1+ e AD( ) .a b⋅ +

The weights and logistic parameters used in these steps are given in Table A-1.

Table A-1. Linear Combination Weights and Logistic Parameters for MNB Structures 1 and 2

Structure 1 Structure 2
w(1) 0.0034  0.0000
w(2) -0.0650 -0.0837
w(3) -0.1304 -0.1199
w(4)  0.1352  0.1260
w(5)  0.5931  0.1660
w(6)  0.2040  0.6387
w(7)  0.5577  0.2195
w(8)  0.1008  0.0122
w(9)  0.0627  1.5544
w(10)  0.0052  0.0954
w(11)  0.0107  0.1720
w(12)  1.1037

a  1.0000  1.0000
b -4.6877 -3.0613


